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Abstract
A new (2 + 1)-dimensional integrable soliton equation is proposed, which has a
close connection with the Levi soliton hierarchy. Through the nonlinearization
of the Levi eigenvalue problems, we obtain a finite-dimensional integrable
system. The Abel–Jacobi coordinates are constructed to straighten out the
Hamiltonian flows, by which the solutions of both the 1 + 1 and 2 + 1 Levi
equations are obtained through linear superpositions. An inversion procedure
gives the quasi-periodic solution in the original coordinates in terms of the
Riemann theta functions.

PACS numbers: 0230J, 0230

AMS classification scheme numbers: 37K10

1. Introduction

The study of finite-dimensional integrable systems (FDIS) and explicit solutions for various
soliton equations has been very important in modern mathematics with ramifications to several
areas of mathematics, physics and other sciences [1, 5, 10, 23]. Every finite-dimensional
integrable system obtained would be looked at as a miracle (such as the Kovakevski top,
geodesic flows on an ellipsoid, the harmonic oscillator equation on a sphere, the Calogero–
Moser system, etc [11–18]. There are special relations between soliton equations and finite-
dimensional integrable system [8, 10, 20–22, 25, 26]. Several methods have been employed to
obtain explicit solutions of soliton equations, for instance, the inverse scattering transformation
(IST), the algebra–geometric method, the Hirota bilinear method, the Lie symmetry method, etc
[25, 30, 31]. Olver and Sokolov [32] give a method to obtain the classification, symmetries and
Hamiltonian structures of integrable evolution equations which include some new important
integrable systems. We try to use this method on equations (2.10) and (2.11) in our paper,
but it is difficult because the uxx, vxx are alternate (compare with (4.7)–(4.25) in [32]). How
one should use the above method to treat equation (2.10) is an open problem that we find
interesting.
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Recently, the nonlinearization approach of Lax pairs (or constrained flows) has been
successfully applied to obtain finite-dimensional integrable systems from Lax pairs of soliton
equations [1–4, 7, 9, 10]. There are many FDIS obtained by means of this approach. Very
recently, the nonlinearization approach has been applied to obtain quasi-periodic solutions of
soliton equations and was generalized to investigate soliton equations in two spatial and one
temporal (i.e. (2 + 1)) dimensions [5, 6], in which two 2 + 1 integrable models, the special
(2 + 1)-dimensional Toda equation and the well known Kadomtsev–Petviashvili equation, are
associated with a same eigenvalue problem and some explicit solutions expressed by the theta
function are obtained through Abel–Jacobi–Riemann inversion.

In this paper we consider a new (2 + 1)-dimensional coupled soliton equation

ut = (
1
4uxx − 1

2u
3 − 3

2uv
2 − 3v∂−1uy

)
x

vt = (
1
4vxx − 7v3 − 3u2v + 3v∂−1vy

)
x

(1.1)

which is connected with the Levi hierarchy [19] and is similiar to the (2 + 1)-dimensional
coupled mKdV equation that is important in physics and soliton theory. By using a map σλ:
C

3 �→ sl(2,C), a 3 × 3 matrix differential Lenard operator and soliton hierarchy with their
Lax pairs are deduced easily. Then the Bargmann constraint is obtained in a natural way
by using another map τλ : C

3 �→ C
3, through which the Lax pair of the soliton equation

is nonlinearized into an N -dimensional Hamiltonian system. The conserved integrals {Fm}
are obtained by resorting to the generating function F(λ). It is shown that the generating
function approach is powerful for proving involutivity and N dependence of the conserved
integrals {Fm}. Hence the N -dimensional Hamiltonian system is integrable in the Liouville
sense. By introducing the elliptic coordinates on the invariant torus of the N -dimensional
Hamiltonian system, the Hamiltonian flows are mapped into linear flows on Abelian varieties
and is integrated directly. Here the generating function approach plays a central role in the
straightening of the flows, where the evolution of all the Fm-flow is obtained simultaneously
through calculation of the evolution of the F(λ)-flow on the Abelian varieties. Finally, the
quasi-periodic solutions of the 2 + 1 coupled soliton equation are obtained by means of the
Riemann theta functions.

2. Preliminaries

Consider the Levi spectral problem [19]:

ϕx = Uϕ U =
(

λ + u 2λ(v − u)

1 −λ − u

)
. (2.1)

Define a linear map σλ : C3 �→ sl(2,C):

σλ(α) =
(

α1 + λα3 2λ(α2 − α1)

α3 −α1 − λα3

)
α ∈ C

3. (2.2)

Here U = σλ((u, v, 1)T ). Let V = σλ(G),G ∈ C
3. Through a direct calculation, we have

Vx − [U,V ] = σλ{(K − λJ )G} (2.3)
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where K,J are Lenard operator pairs:

K =

 ∂ 0 0

2v ∂ − 2u 0
−2 0 ∂ + 2u




J =

 0 −2 2v

−2 0 2u
0 0 0


 ∂ ≡ d

dx
.

(2.4)

LetG = ∑∞
j=0 λ

−j gj−1, gj = (g1
j , g

2
j , g

3
j )

T ∈ C
3, it is easy to prove the following proposition:

Proposition 2.1. The matrix V = σλ(Gλ) satisfies the Lax equation Vx − [U,V ] = 0 if and
only if Kgj = Jgj+1, Jg−1 = 0, j = −1, 0, 1, . . . .

The Lenard gradients {gj } and Levi vector fields {Xj } can been defined recursively by

Kgj = Jgj+1 Jg−1 = 0

Xj = Jgj = Kgj−1 j = −1, 0, 1, 2, . . . .
(2.5)

The explicit recursive formula is

g3
j+1,x = −2vg1

j + (2u − ∂)g2
j

g1
j+1 = 1

2 (∂ + 2u)g3
j+1 j = 1, 2, . . .

g2
j+1 = vg3

j+1 − 1
2g

1
jx .

(2.6)

The first few members are:

g−1 = (u, v, 1)T g0 = (− 1
2vx − uv,− 1

2ux − v2,−v)T

g1 = ( 1
4uxx + 3

2vvx + 3
2uv

2 − 1
2u

3, 1
4vxx + vux + 1

2uvx + 3
2v

3 − 1
2u

2v, 1
2ux − 1

2u
2 + 3

2v
2)T .

The corresponding vector fields are

X0 = (ux, vx, 0)T X1 = (− 1
2vxx − (uv)x,

1
2uxx + uux − 3vvx, 0)T

X2 = ( 1
4uxx + 3

2vvx + 3
2v

2u − 1
2u

3, 1
4vxx + 3

2vux + 5
2v

3 − 3
2u

2v, 0)Tx .
(2.7)

Let

GN = (λNG)+ =
N∑
j=1

λN−j gj−1 VN = σλ(GN).

Then the Levi hierarchy is obtained from the zero-curvature form:

∂

∂tN


 u

v

1


 = XN ⇐⇒ UtN − VNx + [U,VN ] = 0. (2.8)

the Lax pairs of which are

ϕx = U ϕ ϕtN = VN ϕ. (2.9)

The first two members are (t1 = y, t2 = t):

Levi I:

{
uy = − 1

2vxx − (uv)x

vy = 1
2uxx + uux − 3vvx

(2.10)

Levi II:

{
ut = 1

4uxxx + 3
2vvxx + 3

2v
2
x + 3

2v
2ux − 3

2u
2ux + 3uvvx

vt = 1
4vxxx + 3

2vuxx + 15
2 v

2vx + 3
2vxux − 3

2u
2vx − 3uvux.

(2.11)
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The Lax pairs of (2.10) are

ϕx = Uϕ ϕy = V1ϕ (2.12)

V1 =
(

λ2 + λ(u − v) − 1
2vx − uv λ(v − u)x + 2λ(λ − v)(v − u)

λ − v −λ2 − λ(u − v) + 1
2vx + uv

)
.

If (u(x, y, t), v(x, y, t)) is a compatible solution of (2.10) and (2.11), then (u(x, y, t),

v(x, y, t)) is also a solution of the 2 + 1 coupled soliton equation

ut = ( 1
4uxx − 1

2u
3 − 3

2uv
2 − 3v∂−1uy)x

vt = ( 1
4vxx + 7v3 − 3u2v + 3v∂−1vy)x.

(2.13)

3. The Levi–Bargmann system

Let ϕ = (ϕ1, ϕ2)
T be a solution of (2.1), we define a map τλ : C

2 → C
3

τλ(ϕ) = (−λ2ϕ2
2 + λϕ1ϕ2,− 1

2ϕ
2
1 − λ2ϕ2

1 + λϕ1ϕ2, λϕ
2)T . (3.1)

It is easy to test the following formula:

Kτλ(ϕ) = λJτλ(ϕ). (3.2)

Consider N copies of the linear Levi equation (2.1):

∂x

(
pj

qj

)
=
(

αj + u 2αj (v − u)

1 −αj − u

)(
pj

qj

)
j = 1, 2, . . . , N (3.3)

with distinct eigenvalues λ = α1, . . . , αN .
Let

τk ≡ (−αkq
2
k + αkpkqk, αkpkqk − α2

kq
2
k − 1

2p
2
k , αkq

2
k )

T k = 1, . . . , N.

Gλ ≡ g−1 +
N∑
k=1

τk

λ − αk

.

Then we have a Lax matrix:

V (λ) ≡ σλ(Gλ) = 
λ +
N∑
k=1

λ"k

λ − αk

=
(

λ + λQλ(p, q) −2λ〈p, q〉 − λQλ(p, p)

1 + Qλ(q,$q) −λ − λQλ(p, q)

)
≡
(

V11 V12

V21 −V11

)
(3.4)

where Qλ(ξ, η) ≡ ∑N
j=1

ξj ηj
λ−αj

= ∑∞
s=0

〈ξ,$sη〉
λs+1 ,$ ≡ diag(α1, . . . , αN), p ≡ (p1, . . . , pN)

T ,

"k =
(

pkqk −p2
K

q2
k −pkqk

)

λ =

(
λ −2λ〈p, q〉

1 − 〈q, q〉 −λ

)
. (3.5)

Proposition 3.1. The Lax matrix satisfies the following relation:

Vx(λ) − [U,V (λ)] = σλ

(
Jg0 −

N∑
k=1

τk

)
. (3.6)
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Proof. By using (2.3) and (3.2), we have

Vx(λ) − [U,V (λ)] = σλ((K − λJ )Gλ) = σλ

(
Kg−1 +

N∑
k=1

(K − λJ )τk

λ − αk

)

= σλ

(
Jg0 +

N∑
k=1

(K − αk)τk + (αk − λ)J τk

λ − αk

)

= σλ

(
Jg0 −

N∑
k=1

τk

)
.

From here we obtain the Bargman constraint in a natural way:

g0 =
N∑
k=1

τk. (3.7)

The explicit formula can be written in the following form by means of (3.3):

u = 〈p, q〉 − 〈q,$q〉
v = −〈q,$q〉.

(3.8)

Then the spectral problem (2.1) is nonlinearized into a N -dimensional Hamiltonian system

px = ($ + 〈p, q〉 − 〈q,$q〉)p − 2〈p, q〉$q = −∂H

∂q

qx = p + (〈q,$q〉 − $ − 〈p, q〉)q = ∂H

∂p

(H )

where

H = 1
2 〈p, p〉 + 〈p, q〉〈q,$q〉 − 〈p,$q〉 − 1

2 〈p, q〉2. �

Lemma 3.2. Let A,B ∈ sl(2,C), A satisfies the Lax equation Ax = [A,B], then

d

dx
(det A) = 0.

We noticed that V (λ) = σλ(Gλ) is a solution of the Lax equation Vx − [U,V ] = 0 in
the Bargmann constraint, so F(λ) = 1

2λ det V (λ) is invariant along the x flow. Therefore, we
have the generating function of integrals of equation (H ):

F(λ) = 1

2λ
det V (λ) = −λ

2
+

∞∑
m=0

Fm

λm+1
(3.9)

where

F0 = 1
2 〈p, p〉 − 〈p,$q〉 + 〈p, q〉〈q, q〉 − 1

2 〈p, q〉2 = H

Fm = 1
2 (〈p,$mp〉 − 〈p, q〉〈p,$mq〉) − 〈p,$m+1q〉 + 〈p, q〉〈q,$m+1q〉

+ 1
2

m−1∑
k=0

∣∣∣∣ 〈p,$kp〉 〈p,$kq〉
〈p,$m−kq〉 〈q,$m−kq〉

∣∣∣∣.
(3.10)

Proposition 3.3. {Fm} are integrals of the Levi system (H ); i.e. {Fm,H } = dFm

dx = 0.
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Remark. The ‘time’ parts of Lax pairs for the Levi hierarchy are also nonlinearized into
N -dimensional Hamiltonian systems by using (3.8):

ptm = −∂Fm

∂q

qtm = ∂Fm

∂p
.

(Fm)

4. The integrability of the system (H)

4.1. The involutivity of {Fm}
Regard the generating function F(λ) as a Hamiltonian in the symplectic space (R2N, dp∧dq).
Let tλ be the flow variable along the F(λ), then through a direct calculation, the canonical
equation can be written as

d

dtλ

(
pk

qk

)
=




−∂F(λ)

∂qk

∂F(λ)

∂pk


 = W(λ, αk)

(
pk

qk

)
(4.1)

where

W(λ, αk) = V (λ)

λ − αk

+ V0(λ) V0(λ) =
(

−V21 −V12/λ

0 V21

)
. (4.2)

Lemma 4.1. The "k satisfies the Lax equation:

d"k

dtλ
= [W(λ, αk), "k]. (4.3)

Proof. Let S =
(

0 1

−1 0

)
. Then "k =

(
pk

qk

)
(pk qk) S

T = PPT ST , P =
(

pk

qk

)
.

We note the fact:

SBT ST = −B ∀B ∈ sl(2,C).

Therefore, by means of (4.1), we have

d"k

dtλ
=
(

pk

qk

)
tλ

(pk qk) S
T +

(
pk

qk

)
(pk qk)tλ S

T

= WPPT ST + PPTWT ST

= W"k + "k(−W) = [W,"k]. �

Proposition 4.2. The Lax matrix V (µ) satisfies the Lax equation along the F(λ) flow:

d

dtλ
V (µ) = [W(λ,µ), V (µ)] ∀λ,µ ∈ C λ �= µ. (4.4)
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Proof. From equation (3.4) we have

d

dtλ
V (µ) =

N∑
k=1

µ

µ − αk

d"k

dtλ
+

d
λ

dtλ

=
N∑
k=1

µ

µ − αk

[W(λ, αk), "k] +
d
λ

dtλ

where
N∑
k=1

µ

µ − αk

[W(λ, αk), "k] =
N∑
k=1

µ

µ − αk

[
V (λ)

λ − αk

+ V0(λ), "k

]

=
N∑
k=1

(
µ

λ − µ

[
V (λ),

(
1

µ − αk

− 1

λ − αk

)
µ"k

]
+

µ

µ − αk

[V0(λ), "k]

)

= [W(λ,µ), V (µ)] +

[
V (λ)

λ − µ
,
λ

µ

λ − 
µ

]
− [

V0(λ),
µ

]
.

Through a direct calculation, the following formula can be proved:

d
λ

dtλ
+

[
V (λ)

λ − µ
,
λ

µ

λ − 
µ

]
− [

V0(λ),
µ

] = 0. �

Theorem 4.3. {Fm} are involutive integrals of the Levi system (H ).

Proof. We note V (µ) is a solution of the Lax equation (4.4), F(µ) = 1
2µ det V (µ). Therefore,

F(µ) is invariant along the tλ flow, that is

d

dtλ
F(µ) = {F(µ),F(λ)} = 0.

On the other hand,

{F(µ),F(λ)} =
N∑

m=0

N∑
n=0

1

λm+1µn+1
{Fm, Fn}.

Comparing the coefficients of λ,µ, we have {Fm, Fn} = 0,∀m, n ∈ N. �

4.2. The independence of {Fm}
From (4.1) we can calculate

pk

∂F
∂pk

− qk
∂F
∂qk

= 1

λ − αk

(
−2αk〈p, q〉q2

k + p2
k + O

(
1

λ

))
.

We defineN -dimensional vectors withN distinct and sufficiently large constants l1, l2, . . . , lN :

�F = (F(l1), . . . ,F(lN ))
T

�ηk = ∂ �F
∂pk

�ζk = ∂ �F
∂qk

�ξ = pk �ηk − qk�ζk.
(4.5)
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If we omit the higher-order infinitely small 1/lj , there will be

det |�ξ1, �ξ2, . . . , �ξN | =

∣∣∣∣∣∣∣
1

l1−α1
· · · 1

l1−αN

· · · · · · · · ·
1

lN−α1
· · · 1

lN−αN

∣∣∣∣∣∣∣
N∏
k=1

(p2
k − 2αk〈p, q〉q2

k )

=
N∏
k=1

(p2
k − 2αk〈p, q〉q2

k )
∏
j>k

(lj − lk)

N∏
j,k=1
j �=k

(lj − αk)
−1
∏
j>k

(αj − αk).

Therefore, when l1, l2, . . . , lN are distinct and sufficiently large, we shall have

det |�ξ1, �ξ2, . . . , �ξN | �= 0

on the open set{
(p, q)|

N∏
k=1

(p2
k − 2〈p, q〉αkq

2
k ) �= 0

}
.

which means that the vectors �ξ1, �ξ2, . . . , �ξN are linear independent,

N = rank{�ξ1, . . . , �ξN } � rank{�η1, �ξ1, . . . , �ηN, �ξN } � N

rank
∂ �F

∂(p, q)
= rank{�η1, �ζ1, . . . , �ηN, �ζ } = N

that is,

rank
∂ �F

∂(p, q)
= N.

On the other hand,

F(λ) = −λ

2
+

∞∑
m=0

Fm

λm+s
= 1

2λ
det V (λ)

= −λ

2
+
b1λ

N−1 + b2λ
N−2 + · · · + bN

λN + a1λN−1 + · · · + aN
.

Comparing the coefficients of λ, we have

�b = A �F A =




1
a1 1
a2 a1 1
· · · · · · · · · · · ·
aN−1 aN−2 aN−3 . . . a1 1




where

�b = (b1, b2 . . . , bN)
T �F = (F1, F2, . . . , FN)

T .

Therefore, rank �b = rank �F . Otherwise,

a(λ)
∂F
∂pk

= (λN−1, λN−2, . . . , 1)
∂ �b
∂pk

a(λ)
∂F
∂qk

= (λN−1, λN−2, . . . , 1)
∂ �b
∂qk
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that is,

∂ �F
∂(p, q)

= diag

(
1

a(l1)
, . . . ,

1

a(lN)

) lN−1
1 lN−2

2 . . . 1
. . . . . . . . . . . .

lN−1
1 lN−2

2 . . . 1


 ∂ �b

∂(p, q)
.

This implies

rank
∂ �F

∂(p, q)
= rank

∂ �b
∂(p, q)

= N. (4.6)

Hence �b = A �F is functionally independent.
From the above discussion, we have found the following results.

Theorem 4.4. On the open set {(p, q)|∏N
k=1(p

2
k − 2αk〈p, q〉q2

k ) �= 0} ∈ R
N F1, F2, . . . , FN

are functionally independent.

Proof. Because �b = A �F in functionally independent and det(A) = 1, F1, . . . , FN are
functionally independent.

From theorems 4.3 and 4.4, F1, . . . , FN are N involutive and functionally independent
integrals of (H ). So the Hamiltonian system (H ) is a complete integrable systems in the
Liouville sense [23, 27]. �

Theorem 4.5. The N -dimensional Hamiltonian system (H ) is a complete integrable system
in the Liouville sense. The N involutive pairs and functionally independent integrals are
F0, F1, . . . , FN−1.

5. Elliptic coordinates

It is easy to see that each of F(λ), V12(λ), V21(λ), as a rational function of λ, has simple poles
at αj , since the coefficient of (λ − αj )

−2 is zero in F(λ). We have

F(λ) = 1

2λ
det V (λ) = − 1

2λ
(V 2

11 + V12V21) ≡ −1

2

b(λ)

a(λ)

V12 = −2λ〈p, q〉 − λQλ(p, p) ≡ −2λ〈p, q〉m(λ)

a(λ)

V21 = 1 + Qλ(q,$q) ≡ n(λ)

a(λ)

(5.1)

where

m(λ) ≡
N∏
k=1

(λ − µk) n(λ) ≡
N∏
k=1

(λ − νk)

b(λ) ≡
N+1∏
k=0

(λ − βk) a(λ) ≡
N∏
k=0

(λ − αk).
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{µk} and {νk} are defined as elliptic variables. Expanding V12(λ) and V21(λ) in series of λ−k

and comparing the coefficients, we can obtain the following relations:

〈q,$q〉 =
N∑
k=1

(αk − νk)

〈p, p〉 = 2〈p, q〉
N∑
k=1

(αk − µk)

〈q,$2q〉 = 1

2

{[ N∑
k=1

(αk − νk)

]2

+
N∑
k=1

(α2
k − ν2

k )

}

〈p,$p〉 = 〈p, q〉
{[ N∑

k=1

(αk − µk)

]2

+
N∑
k=1

(α2
k − µ2

k)

}
(5.2)

N∑
k=1

αk =
N+1∑
j=1

βj

N∑
k=1

α2
k =

N+1∑
j=1

β2
j (5.3)

v = −〈q,$q〉 =
N∑
k=1

(νk − αk)

(u − v)x

u − v
= 1

2

〈p, p〉
〈p, q〉 − 〈q,$q〉 = 2

N∑
k=1

(νk − µk).

(5.4)

Proposition 5.1. The elliptic coordinates satisfy the evolution equations along the tλ flow:

1

2
√
µkR(µk)

dµk

dtλ
= − m(λ)

a(λ)(λ − µk)m′(µk)

1

2
√
νkR(νk)

dνk
dtλ

= n(λ)

a(λ)(λ − νk)n′(νk)

(5.5)

where

R(λ) ≡ a(λ)b(λ) =
2N+1∏
j=1

(λ − λj )

with λk = αk, λN+j = βj (k = 1, . . . , N; j = 1, . . . , N + 1).

Proof. Substitute λ = µk, νk , respectively, in equation (5.1). We have

V11(µk) =
√
µkR(µk)

a(µk)
V11(νk) =

√
νkR(νk)

a(νk)
. (5.6)

From the Lax equation d
dtλ

V (µ) = [W(λ,µ), V (µ)], we have

d

dtλ
V12(µ) = 2(W11(λ, µ)V12(µ) − W12(λ, µ)V11(µ))

d

dtλ
V21(µ) = 2(W21(λ, µ)V11(µ) − W11(λ, µ)V21(µ)).

Let µ = µk and µ = νk , respectively. After some calculations we have equation (5.5). �
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By means of the interpolation formula for polynomials with degree not more than g = N ,
we have (j = 1, . . . , g)

g∑
k=1

µ
g−j

k

2
√
µkR(µk)

dµk

dtλ
= −λg−j

a(λ)

g∑
k=1

ν
g−j

k

2
√
νkR(νk)

dνk
dtλ

= λg−j

a(λ)
.

(5.7)

Consider the hyperelliptic curve ":

ξ 2 − 4R(λ) = 0 (5.8)

with genus g = N since degR(λ) = 2N + 1. There is a linear independent holomophic
differential [28] on ":

ω̃j = λN−j dλ

2
√
λR(λ)

j = 1, 2, . . . , N. (5.9)

For a fixed λ0, introduce the quasi-Abel–Jacobi coordinates:

φ̃j =
N∑
k=1

∫ µk

λ0

ω̃j

ψ̃j =
N∑
k=1

∫ νk

λ0

ω̃j .

(5.10)

From (5.7), we have

Proposition 5.2 (Straightening of the F(λ) flow).

dφ̃j

dtλ
= −λg−j

a(λ)

dψ̃j

dtλ
= λg−j

a(λ)
. (5.11)

Proposition 5.3 (Straightening of the Fk flow). Let tk be the variable of the Fk flow. Then

dφ̃

dt0
= 0

dφ̃

dtm
= − dψ̃

dtm
= −(Am,Am−1, . . . , Am−g)

T (5.12)

where φ̃ = (φ̃1, . . . , φ̃N )
T , t0 = x,A0 = 1, A−j = 0 (j = 1, 2, . . .), Aj are the coefficients

in the expansion

λN

a(λ)
= 1

(1 − α1λ−1) · · · (1 − αNλ−1)
= 1 +

∞∑
j=1

Ajλ
−j (5.13)

which could be represented through the power sums of αk, σl = ∑N
k=1 α

l
k:

A1 = σ1 A2 = 1
2 (σ2 + σ 2

1 ) A3 = 1
6 (2σ3 + 3σ2σ1 + σ 3

1 )

with the recursive formula

Ak = 1

k


σk +

∑
i+j=k
i,j�1

σjAj


. (5.14)
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Proof. According to the definition of the Poisson bracket:

dφ̃

dtλ
= (φ̃,Fλ) =

∞∑
k=0

1

λk+1
(φ̃, Fk) = 1

λk+1

dφ̃

dtk
.

With the supplementary definition A0 = 1, A−j = 0 (j = 1, 2, 3, . . .), the comparison of the
coefficients of λ−k−1 in equation (5.13) yields dφ̃j /dtk = Ak−j , and

dφ̃

dtm
= − dψ̃

dtm
= −(Am,Am−1, . . . , Am−g)

T .

The proof of equation (5.14) is elementary, resorting to the expansion
∑∞

k=1 k
−1σkλ

−k of the
right-hand side of equation (5.13).

Now we consider the zeros on the hyperelliptic curve " with genus g = N since
degR = 2N + 1. At λ = ∞, the affine equation is transformed into (z = λ−1/2, ξ̂ = z2N+1ξ):

ξ̂ = 4R∗(z)

with

R∗(z) = z4N+2R(z−2) =
2N+1∏
j=1

(1 − λjz
2). (5.15)

Take the canonical basis of cycles on " : a1, . . . , ag, b1, . . . , bg . Let C = (Cjs) be the inverse
of the periodic matrix (Ask):

C = (Ask)
−1
g×g Ask =

∫
ak

ω̃s . (5.16)

Then for the normalized holomorphic differential

ωj =
g∑

s=1

Cjsω̃s ω = (ω1, . . . , ωg)
T = Cω̃ (5.17)

we have ∫
ak

ωj = δjk

∫
bk

ωj = Bjk. (5.18)

According to the Riemannian relation, the matrix B = (jk) is symmetric and has a positive-
definite imaginary part, and is used to construct the Riemannian theta function [29] of ":

θ(ζ ) =
∑
z∈Zg

expπ
√−1(〈Bz, z〉 + 2〈ζ, z〉) ζ ∈ C

g.

For fixed P0 on ", the Abel–Jacobi coordinates are defined as

φ =
N∑
k=1

∫ (µk,ξ(µk))

P0

ω

ψ =
N∑
k=1

∫ (νk,ξ(νk))

P0

ω. �

(5.19)
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Lemma 5.4. Let Sk = λk1 + · · ·+λk2N+1. Then the coefficients of 1√
z2R∗(z)

= ∑∞
k=0 Rkz

2k satisfy

the recursive formula

R0 = 1 R1 = 1

2
S1 Rk = 1

2k


Sk +

∑
i+j=k
i,j�1

SjRk


. (5.20)

Proof. Since ln(1 − t) = −∑∞
k=1 k

−1tk , we have

ln
1√

z2R∗(z)
= −1

2

2N+1∑
j=1

ln(1 − λjz
2) =

∞∑
k=1

Skz
2k.

By differentiating with regard to z and comparing the coeffients of z, we obtain equation (5.20).
Let C1, . . . , Cg be the column vectors of C defined by equation (5.16). Then by direct

calculations, the coefficients in

1

2
√
z2R∗(z)

(C1z + C2z
2 + · · · + Cgz

g) =
∞∑
k=1

?kz
2k−1 (5.21)

are

?k = 1
2 (Rk−1C1 + · · · + Rk−gCg) (5.22)

with the additional definition R−s = 0 (s = 1, 2, . . .). Specifically,

?0 = 0 ?1 = 1
2C1

?k = 1
2 (Rk−1C1 + · · · + R1Ck−1 + Ck) (k = 1, . . . , g). �

Proposition 5.5. The tk flow is straightened by the Abel–Jacobi coordinates:

dφ

dtk
= −?k

dψ

dtk
= ?k. (5.23)

Proof. From equation (5.11) we obtain

dφ̃

dtλ
= λg

2
√
λR(λ)

(λ−1, . . . , λ−g)

dφ

dtλ
= C

dφ̃

dtλ
= λg

2
√
λR(λ)

(C1λ
−1 + · · · + Cgλ

−g) =
∞∑
k=1

?kλ
−k−1.

Hence we obtain the first part of equation (5.23) after comparing the coefficients of λ−k−1,
while the second part is obtained similarly.

The straightened equations (5.23) are easily integrated by quadratures: φ = φ0 −∑?ktk .
And the evolution picture of the confocal flow and Levi flow becomes very simple through the
‘window’ of the Abel–Jacobi coordinates φ (as well as ψ):

confocal Fk: φ = φ0 − ?ktk

Levi Xk: φ = φ0 − ?1x − ?ktk.
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Specifically,

Levi–Bargmann stationary equation (H ): φ = φ0 − ?1x

Levi equation I: φ = φ0 − ?1x − ?2y

Levi equation II: φ = φ0 − ?1x − ?2t

2 + 1 coupled equation: φ = φ0 − ?1x − ?2y − ?3t.

(5.24)

The corresponding explicit solutions are obtained by some inversion procedures from φ,ψ to
the coordinates u, v via the elliptic coordinates {µk, νk}. �

6. Inversion from φ, ψ to {µk}, {νk} and quasi-periodic solutions of LI, LII and (2.3)

The Abel–Jacobi map A: Div(") → J = C
g/T is defined by

A(P ) =
∫ P

P0

ω A

(∑
nkPk

)
=
∑

nkA(Pk) (6.1)

where P0 = ξ(λ0) is fixed, Div(") is the divisor group, and the lattice T is spanned
by the periodic vector {δj ;Bj }, which are the column vectors of E and (Bjs) defined by
equation (5.18). The definition of Abel–Jacobi coordinates is rewritten as

φ = A

{ g∑
j=1

ξ(µj )

}
ψ = A

{ g∑
j=1

ξ(νj )

}
. (6.2)

According to the Riemann theorem [29], there exists a constant vector K such that:

(a) θ(A(P (λ)) − φ − K) has exactly g zeros at λ = µ1, . . . , µg;
(b) θ(A(P (λ)) − ψ − K) has exactly g zeros at λ = ν1, . . . , νg .

And we have the inversion formulae:
g∑

j=1

µs
j = Is(") − Res

λ=∞
λs d ln θ(A(P (λ)) − φ − K)

g∑
j=1

νsj = Is(") − Res
λ=∞

λs d ln θ(A(P (λ)) + ψ + K)

(6.3)

where

Is(") =
g∑

j=1

∫
aj

λsωj

is independent with φ.
In the neighbourhood of λ = ∞,

ω = Cω̃ = −(C1z
2 + · · · + Cgz

2g)
dz√

z2R∗(z)
.

With the help of equation (5.21) we obtain

A(φ(z−1)) = −η +
∞∑
k=1

1

2k
?kz

2k
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where

η =
∫ P0

∞
ω. (6.4)

Hence we have the power-series expansions near λ = ∞ in the local coordinate z = λ−1/2:

ln θ(A(ξ(λ)) − φ − K) = ln θ

(
−φ − K − η −

∞∑
k=1

1

2k
?kz

2k

)

= ln θ(φ + K + η) +
∞∑
k=1

akz
2k

ln θ(A(ξ(λ)) − ψ − K) = ln θ

(
ψ + K + η +

∞∑
k=1

1

2k
?kz

2k

)

= ln θ(−φ − K − η) +
∞∑
k=1

bkz
2k.

(6.5)

Here the fact θ(ζ ) = θ(−ζ ) is used. Equation (6.3) can be written as

g∑
j−1

µs
j = Is(") − sas

g∑
j=1

νsj = Is(") − sbs.

(6.6)

The residue at λ = ∞ can be obtained

Res
λ=∞

λ d ln θ = 2a2 =
g∑

j=1

g∑
k=1

?j1?k1
∂2 ln θ

∂ζj ∂ζk

Res
λ=∞

λ2 d ln θ = 4a4 = 4

3

g∑
j=1

g∑
k=1

?j2?k1
∂2 ln θ

∂ζj ∂ζk

+
4

3

g∑
j=1

g∑
k=1

g∑
l=1

g∑
m=1

∂4 ln θ

∂ζj ∂ζk∂ζl∂ζm
?j1?k1?l1?m1.

The special case is

g∑
j−1

µj = I1(") +
g∑

j=1

?j1?k1
∂2 ln θ

∂ζj ∂ζk

g∑
j=1

νj = I1(") +
g∑

j=1

?j1?k1
∂2 ln θ∗

∂ζj ∂ζk

(6.7)

where

θ = θ(φ − K − η) = θ

(∑
k

?ktk − φ0 − K − η

)

θ∗ = θ(ψ + K + η) = θ

(∑
k

?ktk + ψ0 + K + η

)
.
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Denote x = x0, y = t1, t = t2. By the chain rule of differentiation for composition functions,
equation (6.7) is further simplified as

g∑
j−1

µj = I1(") − ∂2 ln θ

∂x2

g∑
j=1

νj = I1(") +
∂2 ln θ∗

∂x2
.

(6.8)

Proposition 6.1. The quasi-periodic solution of Levi I is

v(x, y) = ∂2

∂x2
ln θ(?1x + ?2y + K + η) + N1

u(x, y) = exp

{
2
∂

∂x
ln(θ(?1x + ?2y + K + η)θ(?1x + ?2y − K − η))

}

+
∂2

∂x2
ln θ(?1x + ?2y + K + η) + N2

(6.9)

where N1 and N2 are constants.

Proof. From equations (5.4) and (6.8), we have

v = −〈q,$q〉 =
N∑
k=1

(νk − αk)

= I1(") −
N∑
k=1

αk +
∂2

∂x2
ln θ(?1x + ?2y + K + η)

= N1 +
∂2

∂x2
ln θ(?1x + ?2y + K + η).

From equation (5.4), we have

(u − v)x

u − v
= 1

2

〈p, p〉
〈p, q〉 − 〈q,$q〉 = 2

N∑
k=1

(νk − µk)

= 2
∂2

∂x2
ln(θ(?1x + ?2y + K + η)θ(?1x + ?2y − K − η)).

Equation (6.8) can be obtained if we omit the integral constant. �
We can also obtain the solution of Levi II in a similar way.

Proposition 6.2. The quasi-periodic solution of Levi II is

v(x, t) = ∂2

∂x2
ln θ(?1x + ?3t + K + η) + M1

u(x, t) = exp

{
2
∂

∂x
ln(θ(?1x + ?3t + K + η)θ(?1x + ?3t − K − η))

}

+
∂2

∂x2
ln θ(?1x + ?3t − K − η) + M2

(6.10)

where M1 and M2 are constants.
When u(x, y, t), v(x, y, t) is a compatible solution of Levi I and Levi II, Then u(x, y, t),

v(x, y, t) is also a solution of the 2 + 1 coupled soliton equation (1.1).
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Theorem 6.3. For the 2 + 1 coupled equation

ut = (
1
4uxx − 1

2u
32 − 3

2uv
2 − 3v∂−1uy

)
x

vt = (
1
4vxx − 7v3 − 3u2v + 3v∂−1vy

)
x

there exists a quasi-periodic solution

v(x, y, t) = ∂2

∂x2
ln θ(?1x + ?2y + ?3t + K + η) + C1

u(x, y, t) = exp

{
2
∂

∂x
ln(θ(?1x + ?2y + ?3t + K + η)θ(?1x + ?2y + ?3t − K − η))

}

+
∂2

∂x2
ln θ(?1x + ?2y + ?3t + K + η) + C2

(6.11)

where C1, C2 are constants.
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